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Abstract

Over the last 15 years a large amount of scholarship in legislative politics has used
NOMINATE or other similar methods to construct measures of legislators’ ideolog-
ical locations. These measures are then used in subsequent analyses. Recent work
in political methodology has focused on the pitfalls of using such estimates as vari-
ables in subsequent analysis without explicitly accounting for their uncertainty and
possible bias (Herron and Shotts, 2003). This presents a problem for those employing
NOMINATE scores because estimates of their unconditional sampling uncertainty or
bias have until now been unavailable. In this paper, we present a method of form-
ing unconditional standard error estimates and bias estimates for NOMINATE scores
using the parametric bootstrap. Standard errors are estimated for the 90th Senate
in two dimensions. Standard errors of first dimension placements are in the 0.03 to
0.08 range. The results are compared to those obtained using the MCMC estimator of
Clinton, Jackman, and Rivers (2002). We also show how the bootstrap can be used to
construct standard errors and confidence intervals for auxiliary quantities of interest
such as ranks and the location of the median Senator.



1. Introduction

The purpose of this paper is to show a general method for obtaining standard errors, confi-

dence intervals, and other measure of uncertainty for the ideal point estimates obtained from

NOMINATE and other similar scaling procedures. The number of parameters estimated by

these scaling methods is so large that conventional approaches to obtaining standard errors

have proven impractical. Our approach is to use the parametric bootstrap (Efron, 1979;

Efron and Tibshirani, 1993) to obtain standard errors and other measures of estimation un-

certainty. Nominal Three-step Estimation (NOMINATE) was originally developed by Poole

and Rosenthal (1985; 1991; 1997) to scale U.S. Congressional roll call data. The method is

based upon a probabilistic spatial voting model that utilizes a random utility function (Mc-

Fadden, 1976). NOMINATE produces ideal points for the legislators and two points – one

corresponding to the Yea outcome and one corresponding to the Nay outcome – for every roll

call along with the parameters of the utility function. If there were 100 legislators and 500

roll calls then NOMINATE estimates 1,101 parameters in one dimension and 2,202 parame-

ters in two dimensions using the 50,000 observed choices. In a classical maximum likelihood

framework the standard errors are obtained from inverting either the information matrix or

inverting the analytical Hessian matrix directly. Unfortunately, this entails inverting a very

large matrix and is computationally difficult even with modern computers.

Because of these difficulties, NOMINATE only computes conditional standard errors.

For example, the standard errors for a legislator’s ideal point parameters are obtained from

inverting just the information matrix for those parameters – the roll call parameters are fixed

and each legislator’s parameters are independent of other legislator parameters. Although

computationally easy to compute, the quality of these conditional standard errors is suspect

and they probably underestimate the true uncertainty. Indeed, Clinton, Jackman, and Rivers

(2002) show that the standard errors from W-NOMINATE may be smaller than those they

derive from an MCMC approach. Unfortunately, a direct comparison is not possible because

CJR use a quadratic utility function while NOMINATE is based upon a normal distribution

utility function. Because of the computational intensity of the MCMC approach, it has of

yet not been applied to the NOMINATE model.
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We bridge this gap by applying the parametric bootstrap to W-NOMINATE as well

as the Quadratic-Normal (QN) scaling procedure developed by Poole (2000; 2001). The

QN procedure is based upon the quadratic utility function so that we can compare the

bootstrapped standard errors from both procedures with the standard errors derived from

the CJR MCMC method.

Interestingly, how the scale, location, and rotation of the issue space are defined com-

plicates not only comparisons of the point estimates across models, but also comparisons of

uncertainty estimates. How the space is identified affects in subtle ways which members’ lo-

cations are estimated to be more or less uncertain. Thus, while we find similar general levels

of uncertainty in the estimates generated by each model, the way in which estimation un-

certainty is distributed across members varies considerably. As described below, this should

not be surprising given that the definition of the issue space is arbitrary and ultimately what

these models recover are the relative locations. Accordingly, much of the apparent difference

in the uncertainty estimates evaporates when uncertainties in rank orders as opposed to

locations are considered.

Beyond providing estimates of standard errors, the bootstrap technique can also be used

to calculate uncertainty estimates for other other commonly calculated quantities of interest

that are constructed from ideal point estimates such as the location or identity of the median

Senator or the filibuster pivot.

In the next section we briefly describe the bootstrap. In section three, we explain how

the parametric bootstrap is applied to W-NOMINATE and QN. In section four we present

the results of applying the bootstrap to roll call data from the 90th Senate in two dimensions

and we compare the bootstrap results for NOMINATE and QN to the CJR’s IDEAL model

applied to the 90th Senate in two dimensions. In section five, we use the bootstrap to

calculate the uncertainty in additional quantities of interest arising from the ideal point

estimation. In section six, we conclude.
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2. The Parametric Bootstrap

Excellent discussions of the bootstrap are provided in Efron and Tibshirani (1993), Hall

(1985), Mooney (1996), and Young (1994). We will only briefly discuss the bootstrap here

and we will focus on the less common parametric form of the bootstrap that we employ.

Typically, the bootstrap is used to provide estimates of the standard errors and confidence

intervals that do not rely on asymptotic normality. When the non-parametric bootstrap

is employed, the resulting confidence intervals and standard errors are non-parametric in

the sense that they do not rely on the correctness of the likelihood function for the data.

This can be particularly useful in cases where the robustness to distributional assumptions

is of great concern, the estimation is itself non-parametric, or the samples are too small

to rely on asymptotic approximations. In our case, the reason to apply the bootstrap is

mainly computational convenience, though, we will show in Section 6, the bootstrap also

allows us to estimate the uncertainty of auxiliary quantities of interest such as the location

of the median legislator. Recovering the variance-covariance matrix of parameter estimates

by forming and inverting the full (estimated) information matrix for roll call voting models

such as NOMINATE or QN is sufficiently difficult that the bootstrap is an attractive and

tractable alternative.

Following Efron (1979), let θ be a vector of parameters to be estimated and θ̂ be an

estimator of θ. The sampling distribution of θ̂ is dependent on the joint distribution of the

data. Let F be the joint cumulative distribution of the data. We can then write θ̂(F ). If

F was known, the sampling distribution of θ̂ could be ascertained directly by analytic or

simulation methods. Using simulation methods, repeated samples would be drawn from F , θ̂

calculated for each sample, and features of the sampling distribution of θ̂ approximated with

arbitrary precision (as the number of pseudo samples grows large).1 Efron (1979) shows that

θ̂(F̂ ) can provide a good approximation of ˆθ(F ) where F̂ is an estimate of F based on sample

data. Even in small samples approximating F by some F̂ will in many situations provide

excellent estimates of the sampling distribution of θ̂(F ). Some asymptotic properties of θ̂(F̂ )

in fairly general (usually univariate) settings are given in Hall (1994) and cites therein.

In simple settings where the data are independently and identically distributed, the
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non-parametric ML estimate of the marginal distribution of each observation is simply the

empirical distribution of the observations. In this case, an approximate draw from the joint

distribution F can be made by sampling with replacement n draws from the observed data,

where n is the number of observations. Consider the case where the data are observations

on a single variable Y . Letting ~y = (y1, y2, . . . , yn) be a vector of observations on Y , drawing

a sample from F̂ is a matter of sampling with replacement n values in turn from ~y where

each element of ~y is selected with probability 1/n at each turn.

In cases where the data are not i.i.d., simple resampling from the data does not generally

yield draws from a joint distribution, F̂ , that is a good approximation of draws from F . If

the dependence in the data is temporal or spatial, “block” resampling schemes that draw

randomly groups of adjacent observations from the data have been suggested (see Hall 1985,

Hall 1994, and cites therein). In the case of roll call voting data both the rows and columns

of the data matrix are dependent. Indeed, it is these dependencies that are exploited in

recovering the ideal point and vote parameters. However, unlike time series or spatial data,

we have no ex ante expectations about which elements of the vote matrix are “close” to which

others.2 Given this lack of ex ante information about how to structure a block resampling

scheme, there is no obvious way (at least to us) of implementing the non-parametric bootstrap

in this case.3

On the other hand, the parametric bootstrap is easy to apply to maximum likelihood

estimators such as NOMINATE or QN. In the parametric bootstrap, F̂ is estimated directly

from the likelihood itself. That is, the joint distribution of the data is approximated by

the likelihood evaluated at θ̂. In either QN or NOMINATE individual vote choices are

independent conditional on the value of the roll call and ideal point parameters. Thus,

conditional on the estimated roll call parameters and ideal points, draws from the joint

distribution of the data matrix can be made by drawing from each element of the data matrix

independently. Because the estimated parameters are not equivalent to the true parameters,

the estimated joint distribution of the data, F̂ , differs from F , as in the non-parametric

case. Note that estimating F based on the parameter estimates is similar to substituting

the information matrix evaluated at the estimated parameter values (as opposed to the true

values) when approximating the variance covariance matrix of ML estimators in the usual
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way (see Efron 1982).

By the Slutsky theorem, the parametric bootstrap estimate of F will be consistent if θ̂ is

consistent for θ.4 Precise conditions under which the models described above are consistent

have yet to be established. The models are known not to be consistent as the number of roll

calls or the number of legislators goes to infinity, though it may be that sending the number

of members, the number of votes, and the ratio of votes to members to infinity is sufficient

(Londregan 2000). Thus, we cannot appeal to standard asymptotic results to establish the

admissibility of the parametric bootstrap estimator in this case. However, extensive Monte

Carlo experiments on both these models and similar models in psychometrics suggest that

accurate and reliable estimates are obtained if the data matrix has rank of 100 (Lord 1983,

Poole and Rosenthal, 1997)—the rank of the Senate roll data considered below.5

Finally, it should be noted that unlike the non-parameteric bootstrap, the parametric

bootstrap is not robust to violations of distributional assumptions. On the other hand, the

quality of the parameter estimates themselves depend on these same assumptions and if these

assumptions are correct, the parametric bootstrap will provide a more efficient estimator of F

than the nonparametric bootstrap. As mentioned above, the parametric bootstrap turns on

the same logic as the standard inverse of the sample information estimator that is typically

used to infer the uncertainty of ML estimates.6

3. Application of the Parametric Bootstrap to the 90th Senate

The parametric bootstrap is very simple conceptually. In a maximum likelihood or proba-

bilistic framework, the first step is to compute the likelihood function of the sample. The

second step is to draw, for example, 1000 samples from the likelihood density and compute

for each sample the maximum likelihood estimates of the parameters of interest. Finally, the

sample variances computed from these 1000 values are the estimators of the variances of the

parameters (Efron and Tibshirani, 1993, ch. 6).

When applied to a scaling method such as W-NOMINATE, the first step is to run the

program to convergence and then calculate the probabilities for the observed choices. This

produces a legislator by roll call matrix containing the estimated probabilities for the corre-
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sponding actual roll call choices of the legislators.

To draw a random sample we simply treat each probability as a weighted coin and we

“flip” the coin. We do this by drawing from a uniform distribution over zero to one —

U(0, 1)— and if the random draw is less than or equal to the estimated probability then

our sampled value is the observed choice. If the random draw is greater than the estimated

probability, then our sampled value is the opposite of the observed choice; that is, if the

observed choice is Yea then our sampled value is Nay. We then apply W-NOMINATE to

this sample roll call matrix. This process is repeated 1000 times and the variances of the

legislator ideal points are calculated using the 1000 estimated bootstrap configurations.

Technically, let cij be the observed choice for the ith legislator (i = 1, . . . , p) on the jth

roll call (j = 1, . . . , q) where the possible choices are Yea or Nay. In the U.S. Congress there

is very little policy related abstention (Poole and Rosenthal, 1997) so we treat non-voting

as missing data. Let P̂ijc be the estimated probability for the observed choice and let φ be

a random draw from U(0, 1). Let ĉij be the sampled choice. The sample rule is:

ĉij =







cij, if φ ≤ P̂ijc

∼ cij, if φ > P̂ijc

(1)

where ∼ cij represents the opposite choice to cij. This technique allows the underlying

uncertainty to propagate through to all the estimated parameters. To see this, note that as

the P̂ijc → 1, then ĉij → cij , that is, sample choices become the observed choices so that the

bootstrapped variances for the parameters of the model go to zero. If the fit of the model is

poor, for example, if the P̂ijc are between 0.5 and 0.7, then the bootstrapped variances for

the parameters will be large.

Although we obtain bootstrap estimates of the means and standard deviations of all the

parameters, we focus our analysis on the legislator ideal points because they are used in

a wide variety of secondary analyses by many researchers. Let X̂ be the p × s matrix of

legislator coordinates estimated by either W-NOMINATE or QN. Let h = 1, . . . ,m be the

number of bootstrap trials and let Xh be the p×s matrix of legislator coordinates estimated

on the hth bootstrap trial. The legislator and roll call coordinates are only identified up to

an arbitrary rotation in the s-dimensional space. This arbitrary rotation must be removed
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to ensure that the bootstrap process produces accurate estimates of the standard deviations

of the parameters. In particular, we assume that:

X̂ = XhV + E. (2)

V is an s × s matrix such that V′V = VV′ = Is where Is is an s × s identity matrix and

E is a p × s matrix of errors. In psychometrics, equation (11) is known as the orthogonal

procrustes problem. We use Schonemann’s (1966) solution to remove the arbitrary rotation,

V. Note that we are rigidly rotating Xh, we are not altering the estimated points vis a vis

one another in any way. Consequently, in our discussion below we will simply denote the

hth bootstrap trial matrix as Xh to avoid notational clutter.

For our example we apply the parametric bootstrap to W-NOMINATE and QN for the

90th Senate (1967-68) in two dimensions. We performed 1000 bootstrap trials as described

above and computed the means and standard deviations of all the estimated parameters.

For example, for the ith legislator on the kth dimension the mean of the bootstrap trials is:

x̄ik =

m
∑

h=1

xhik

m
(3)

where m = 1000 is the number of trials and xhik is the estimated coordinate on the hth trial.

The corresponding standard deviation is:

SE (xik) =

√

√

√

√

√

m
∑

h=1

(xhik − x̂ik)2

m− 1
(4)

where x̂ik is the coordinate estimated by W-NOMINATE or QN.

We take a conservative approach and use the estimated coordinate, x̂ik, rather than the

mean of the bootstrap trials, x̄ik, as our “sample mean” in our calculation of the standard

deviation. This inflates the standard deviations somewhat but we feel it is better to err on

the safe side and not underreport the standard deviations.

Figure 1 shows the estimated ideal points for the 90th Senate from W-NOMINATE
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along with the bootstrapped standard errors. The cross hairs through the ideal points show

the 95 percent confidence intervals. The standard errors are small even for the second

dimension. On the first dimension, 97 of 101 standard errors were 0.09 or less and on the

second dimension, 90 of 101 standard errors were 0.10 or less. Given that W-NOMINATE

constrains the legislator ideal points to lie within the unit circle, these standard errors are

small relative to the estimated ideal points. For most Senators the correlation between the

estimated first and second dimension coordinates is very low. Normal theory confidence

ellipses are shown for Senators whose first dimension coordinate is correlated with their

second dimension coordinate at |ρ| > 0.15. This correlation is a consequence of the constraint

that legislator ideal points lie within the unit circle.

[Figure 1 about here.]

The bias of the NOMINATE estimates can be assessed by comparing ML estimates to

the means of the bootstrap estimates. There is very little evidence of bias. The mean

of the absolute differences between the estimated ideal points and the bootstrapped mean

ideal points for the first dimension is 0.023 with a standard deviation of 0.017. The mean

absolute difference for the second dimension is 0.029 with and a standard deviation of .025.

The diameter of the space is 2.0 units so these mean differences are on the order of one one-

hundredth the span of the space. One important caveat is that the potential bias that we are

assessing is finite (or “small sample”) bias as opposed to specification bias.7 The parametric

bootstrap conditions on the correctness of the model and, therefore, cannot detect bias that

arises from incorrect specification. However, Lord (1983) and others have noted the existence

of substantial small-sample biases in models similar to NOMINATE, so the fact that such

bias is shown here to be small is an important finding.

The upper left-hand panel of Figure 2 shows the bootstrapped standard errors for the

two dimensions graphed against one another by Senator. As expected, the standard errors

on the first dimension are smaller than the second. Only seven Senators had larger standard

errors on the first dimension than they had on the second. Charles Goodell (R-NY) is a

notable outlier on both dimensions. He was appointed to the Senate on 10 September 1968

to replace Robert F. Kennedy. Goodell only voted on 39 roll calls of which only 31 were

9



scalable (2.5 percent in minority or better).

The remaining two panels in the first row of Figure 2 show the conditional standard errors

from W-NOMINATE versus the bootstrapped standard errors by dimension. As expected,

the conditional standard errors are smaller than the bootstrapped standard errors especially

on the first dimension. On the first dimension the conditional standard errors are about

half the magnitude of the bootstrapped standard errors while on the second dimension the

magnitude difference is not as large.

[Figure 2 about here.]

The second row of panels in Figure 3 display the Senator coordinates on the two dimen-

sions versus the respective bootstrapped standard errors. The unit circle constraint shows

up clearly in the plots. Senators near the edges of the space have smaller standard errors.

Figures 3 and 4 show the bootstrap results for QN applied to the 90th Senate. Figure 3

shows the estimated ideal points for the 90th Senate from QN along with the bootstrapped

standard errors. The cross hairs through the ideal points show the 95 percent confidence

intervals. The standard errors for QN are smaller than those for W-NOMINATE. On the

first dimension, 100 of 101 standard errors were 0.09 or less and on the second dimension,

92 of 101 standard errors were 0.10 or less. As was the case for W-NOMINATE, for most

Senators the correlation between the estimated first and second dimension coordinates is

very low. Normal theory confidence ellipses are shown for Senators whose first dimension

coordinate is correlated with their second dimension coordinate at |ρ| > .30. This correlation

is a consequence of the constraint that legislator ideal points lie within the unit circle.

[Figure 3 about here.]

Figure 1 and Figure 3 are very similar. QN and W-NOMINATE recover essentially the

same configuration of ideal points. Regressing the first dimension W-NOMINATE coor-

dinates on the first dimension QN coordinates produces an r-square of .982 (W-NOM 1st

= -.025 + 1.316*QN 1st) and an r-square of .958 for the corresponding second dimension

coordinates (W-NOM 2nd = .010 + 1.324*QN 2nd ). The fact that the W-NOMINATE

configuration is slightly “inflated” vis a vis the QN configuration is due to W-NOMINATE
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setting the most extreme legislators at opposite ends of the first dimension to –1 and +1. In

a one-dimensional scaling there will always be at least one legislator at –1 and at least one

legislator at +1. When a second dimension is estimated, some of these legislators at or near

–1 or +1 may end up on the rim of the circle. QN estimates both dimensions simultaneously

and only constrains legislators to lie within the unit hypersphere. Hence, a typical QN con-

figuration will not be as “inflated” as the corresponding configuration from W-NOMINATE.

To make the results more comparable across methods, the QN results are re-scaled such that

the most extreme members on each end of each dimension are placed at -1 or 1.8

Again, there is very little evidence of finite-sample bias. The mean of the absolute

differences between the estimated ideal points and the bootstrapped mean ideal points for

the QN first dimensions is 0.022 with a standard deviation of 0.013. The mean absolute

difference for the second dimension is 0.029 with and a standard deviation of .025. These

mean differences are on the order of one one-hundredth the span of the space.

The upper left-hand panel of Figure 4 shows the bootstrapped standard errors graphed

against one another by Senator. Just as with W-NOMINATE, the QN standard errors on

the first dimension are smaller than the second. Once again, Charles Goodell (R-NY) is a

notable outlier on both dimensions.

The next two panels of Figure 4 show the conditional standard errors from QN versus the

bootstrapped standard errors by dimension. As expected, the conditional standard errors

are smaller than the bootstrapped standard errors. On both dimensions the conditional

standard errors are about half the magnitude of the bootstrapped standard errors.

[Figure 4 about here.]

The bottom row of panels in Figure 4 display the Senator coordinates on the two dimen-

sions versus the respective bootstrapped standard errors. The patterns in Figure 4 for QN

are just the opposite of those for W-NOMINATE in Figure 2. In W-NOMINATE, legislators

are constrained to lie on the –1 to +1 interval when the first dimension is estimated. Because

W-NOMINATE estimates one dimension at a time this has the effect that legislators who

are extreme on the first dimension tend to lie near the unit circle when the second dimension

is estimated. Since they cannot wander out of the unit circle when the second dimension is
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estimated extremists have little “wiggle room” in the W-NOMINATE framework. In con-

trast, in QN the dimensions are estimated simultaneously. The different constraint structure

in QN means that extremists have more “wiggle room”. Hence, legislators furthest from the

center (recall that we have scaled the QN coordinates to −1 to +1 for graphical purposes

only!) tend to have slightly larger standard errors. However, this difference between the

two procedures is not really that great. Note that the standard errors are small for both

procedures—especially for the bulk of legislators who are not extremists.

4. Comparing W-NOMINATE, QN and IDEAL

In this section we compare the bootstrapped NOMINATE and QN estimator to the IDEAL

model of Clinton, Jackman, and Rivers (2002). The IDEAL model begins with the same

random utility model as QN. However, IDEAL is a Bayesian estimator that is estimated using

Markov Chain Monte Carlo (MCMC). MCMC models yield estimates of the complete joint

posterior distribution of the estimates from which point estimates and confidence intervals

and other quantities of interest can be computed (see Jackman 2000a; 2000b; 2001). MCMC

models are, however, computationally intensive and time consuming to estimate even for

modern computers. Until now, however, MCMC was only way to obtain unconditional

estimates of parameter uncertainty.

[Figure 5 about here.]

Unfortunately, comparisons among ideal point estimators cannot be made directly. Be-

cause the scale and location of the issue dimensions are arbitrary up to rotations of axes,

shifts of axis location, and stretches of scale, disagreement between the first dimension po-

sitions as measured by any two methods cannot be taken as direct evidence of fundamental

disagreement between the two methods. This problem is further exacerbated when, as is

the object here, we wish to make comparisons between the uncertainties associated with

the ideal point estimates made by differing methods. Beyond any differences in the orien-

tation, location, and metric of the issue space, the definition of the issue space affects how

the uncertainty is distributed across the ideal point estimates. For example, if the space is
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identified by fixing the location of three of the ideal points (in two dimensions), those three

members will, by definition, have no uncertainty associated with their locations. Any sam-

pling variability that is associated with the voting records of the members whose locations

are fixed will be accounted for through the uncertainty in the estimates of the remaining

members whose positions are measured relative to those members whose positions are fixed

a priori. What is identified in spatial models are the distances between member locations

and, thus, the relevant uncertainties in ideal point estimates are ultimately uncertainties in

the distances between member locations.

In order to make comparisons between IDEAL and either QN or NOMINATE, we must

first account for any arbitrary differences between the issue space recovered by IDEAL and

the space recovered by the other two methods. In what follows, we remove any arbitrary scale

difference between IDEAL and NOMINATE by post-processing the the posterior draws from

a specification of IDEAL which does not uniquely determine. The post-processing involves

linearly transforming each posterior draw from IDEAL to minimize the squared distance

between each posterior draw and the NOMINATE estimates.9 This approach is similar to

fixing the means and variance along each dimension and fixing the orientation of the axes.

The IDEAL estimates and associated uncertainties are shown in Figure ??. Note the

overall pattern is very similar to that found for NOMINATE and for QN. Indeed as shown

in Table 1, the correlations among the estimates across the three methods exceed 0.99 for

the first dimension positions and 0.97 for the second dimension scores.

[Figure 6 about here.]

Figure 6 shows plots of the estimated standard errors (a posteriori standard deviations)

from IDEAL plotted against each other and against the first and second dimension point

(mean a posterior) estimates. These plots are similar to Figure 4 even though QN uses

constraints.

Table 1 reports the correlations among the point estimates and standard errors for the

three methods and Figure 7 plots the standard error estimates of the three methods against

one another. Looking first at the estimates themselves, we find a very high level of agreement

among all three methods. The point estimates correlate over 0.97. This result is consistent
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with previous comparisons of roll scaling techniques (see Heckman and Snyder 1997; Poole

and Rosenthal, 1997; Poole, 2000; 2001).

[Table 1 about here.]

[Table 2 about here.]

As shown in Table 2, the average standard errors are small for all three models. Even

though the range of the ideal point estimates have been normalized, there is still some

variation in the standard deviations in the estimates across methods as seen in the second

column of the table. The third column shows a rough “signal to noise” ratio for the estimates,

by dividing the standard deviation in the point estimates (the signal) by the average standard

error of the estimates (the noise). Even with these adjustments, however, the table does not

allow a direct comparison of the uncertainty across methods. IDEAL loads a considerable

amount of uncertainty in the locations of a few extreme members, while QN and, particularly,

NOMINATE spreads the uncertainty more evenly across members.

All three methods yield very similar overall estimates of uncertainty. The posterior

standard deviations of IDEAL and the bootstrapped standard errors generally fall between

0.03 and 0.12. However, there is less agreement as to which Senators are more or less reliably

measured. Table 1 reports the correlations among the point estimates and standard errors.

The positive correlations found between the standard error estimates across methods are

largely the result of the high level of uncertainty in the location of Goodell.

[Figure 7 about here.]

Differences in which members are more precisely estimated are due to differences in

the utility functions used by each model and in the identifying restrictions. Under the

NOMINATE model which uses Gaussian utility functions and identifies the space by limiting

ideal points to fall inside the unit circle, extreme members are estimated to have small

standard errors. In every bootstrapped sample the same members are found to be the most

extreme and the most extreme position is by definition within the unit circle. If in a given

bootstrap sample the left-most member is estimated to be relatively more extreme than in
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the average bootstrap sample, it is the rest of the Senate, and not the extreme member,

whose ideal points shift. On the other hand, IDEAL does not constrain the policy space to

a particular interval or region (even after post-processing). Thus, if the left-most member is

relatively more extreme in a given posterior draw, that relative extremism can be reflected in

her own ideal point. Additionally, under the quadratic utility function employed by IDEAL

and QN, the likelihood of casting a vote for the left alternative is monotonically increasing

as a Senator’s ideal point is moved to the left for any bill parameters. On the other hand,

under the Gaussian utility model employed by NOMINATE, moving to the left does not

always produce a higher probability of choosing the left alternative. Thus, the NOMINATE

model does not have the same centripetal pressure to push extreme Senators farther from

moderate Senators at an increasing rate as their voting records approach perfect ideological

voting. These two effects account for variation in standard error estimates seen in Figure 7.

In order to more directly compare the uncertainty of the estimates generated by each

method, we remove differences in scale by considering the estimated rank order of Senators

along each dimension and confidence intervals for these rank orderings. By looking at ranks

(an inherently relative measure of location), much of the apparent difference in the uncer-

tainty associated with each member’s location across estimators vanishes. The bootstrap

confidence intervals for the ranks are easily computed. For each bootstrap sample, the ideal

point estimates are ranked. The 0.025 and 0.975 quantiles of each Senator’s rank position

across the 1000 bootstrapped samples are taken as lower and upper bounds of a 95 percent

confidence interval for each Senator’s rank position. The results of this analysis are shown

in Figure 8. Because ranks are inherently scale-free and relative, we see much less variation

across the three methods. In terms of ranks, all three methods provide strikingly similar

estimates of uncertainty. This finding demonstrates how variation in the estimation uncer-

tainty across Senators’ locations is largely a function of the constraints that must be imposed

in order to identify the scale of the issue dimension. Once the choice of scale is removed

(as when ranks are considered), the more fundamental variation is revealed. Those at the

end of the scale can be said with great confidence to be at the ends, those in the middle are

similarly pinned down. More difficult to disentangle are the those liberal and conservative

members located near the median of each party’s caucus.

15



Overall, we find that all three methods provide very similar estimates of Senators’ ideal

points and produce very similar uncertainty estimates once arbitrary differences in the defini-

tion of the policy space and identifying restrictions are accounted for. Remaining differences

are attributable to differences between the assumed utility functions and an inability to

completely account for differences in identifying restrictions.

[Figure 8 about here.]

5. Beyond Standard Errors: Bootstrapping Auxiliary Quantities of

Interest

One particularly useful aspect of the bootstrap is that it allows us to quickly and easily

compute confidence intervals and other measures of uncertainty for many of the auxiliary

quantities of interest that can be inferred from these models. In the previous Section, we used

the bootstrap to estimate confidence intervals for the rank-order positions of members of the

90th Senate along each of two issue dimensions. In this Section, we present a few examples

of how the uncertainties of other quantities of interest derived from ideal point estimates

can be ascertained through the use of the parametric bootstrap. For these examples, we

turn to data from the 105th Senate in part because the names of the central actors will

be more familiar to the reader and because the 105th Senate is nearly unidimensional in

contrast to the two-dimensional 90th Senate. Unidimensionality is relevant here because

the quantities of interest that we consider, such as the location of the median voter in the

chamber, the location of the filibuster pivot, and the identity of the median and filibuster

pivot, are theoretically compelling in the context of a unidimensional setting.

As was the case for the 90th Senate, ideal point estimates for the 105th senate are

very highly correlated (greater than 0.98 correlation). Table ?? shows the average standard

errors for estimates of one-dimensional ideal points for the 105th Senate.10 As was the

case in the presentation of the 90th Senate, all three models present similar estimates of

estimation uncertainty. The signal-to-noise ratios are somewhat higher here due to the

unidimensionality and the high degree of ideological voting seen in the 105th Senate.
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[Table 3 about here.]

Beyond simply estimating standard errors and confidence intervals, the bootstrap pro-

vides estimates of the complete sampling distribution of the model parameters. Figure 9

shows histograms of the (bootstrapped) sampling distribution of the ideal point estimates

of five Senators. The figure shows how the constraints in NOMINATE and QN limit the

variability of the estimates of extremists such as Kennedy and Ashcroft both of whom have

asymmetric sampling distributions under QN and NOMINATE. On the other hand, the

posterior distributions from IDEAL show the greatest uncertainty in the locations of the

extremists.

[Figure 9 about here.]

[Table 4 about here.]

Table 4 shows the position of the estimated chamber median for the 105th Senate.11 The

bootstrapped standard errors are calculated by finding the position of the median Senator

in each bootstrap estimate and then taking the standard deviation across those medians.

Note that the standard error of this estimate is smaller than the average standard error for

the individual members. This is true both because the median is among the members whose

ideal point is estimated to be quite small, and because the identity of the median is not fixed

across bootstrap estimates (or posterior draws in the case of IDEAL). Thus, in samples in

which a potential median voter is estimated to have a relatively more extreme position than

other nearby members, some other Senator will be estimated to be the median.

[Table 5 about here.]

Similar results are found for the location of the filibuster pivot and are shown in Table

5. Interestingly, while there is greater uncertainty in the location of members close to the

estimated filibuster pivot (the location of the 40th most liberal member), there are many

more members who are in close proximity to it. Thus, the standard error of the estimated

pivot position is similar to that of the estimated median.

[Table 6 about here.]
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[Table 7 about here.]

Tables 6 and 7 show the estimated sampling distributions over the identities of the me-

dian and filibuster pivot Senator. For the Bayesian IDEAL estimator this can be directly

interpreted as the posterior probability that a given Senator was in fact the median or the

pivot. For the frequentist QN and NOMINATE models, we cannot correctly make the same

interpretation. Nor, however, can these probabilities be construed as p-values for tests of

the hypothesis that a given Senator is the median or filibuster pivot because these probabil-

ities are conditional on the estimated model and not on the validity of the null hypothesis.

However, they do give us a measure of confidence in the assertion that a particular member

was indeed the filibuster pivot or median.

6. Conclusion

Our results show that the parametric bootstrap is an effective method to obtain standard

errors for the parameters of ideal point estimation methods. We show that in general the

standard errors for NOMINATE and QN scores are relatively small. We also show how the

bootstrap can be used to provide estimates of the many quantities of interest associated with

ideal point estimates.

In future work we will describe how bootstrapped estimates can be used to correct for

measurement error in regression models in which NOMINATE scores are used as dependent

or independent variables.12 We also plan to make bootstrapped NOMINATE estimates avail-

able to researchers, so that in future work scholars can incorporate the call of methodologists

such as Herron and Schotts (2003) to explicitly account for the estimation uncertainty in the

variables that are used in subsequent analysis.
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Notes

1Monte Carlo experiments, for example, posit a given F and then recover the sampling

distribution of θ̂(F ).

2Obviously, elements in the same column or row will be expected to be particularly

dependent.

3In structural equations modeling, which also involves dependent data, a non-parametric

bootstrap is possible because these models operate on the variance-covariance matrix of the

data which can be simulated by simple resampling techniques (Bollen and Stein 1992).

4To appeal to the Slutsky theorem, certain conditions must hold. In particular, F must

be a continuous function of θ.

5Our own Monte Carlo experiments confirm the effectiveness of the parametric bootstrap

technique in this setting.

6Efron (1982) shows that the typical inverse of the sample information estimator for the

variance matrix of ML estimates is a second-order approximation to the variance matrix that

would be recovered by the parametric bootstrap.

7Note that in general ML models can not be shown to be unbiased in finite samples.

Typically, they can be shown to be consistent as the number of observations grows large.

The question then is when is the sample large enough that the small sample bias is negligible.

The parametric bootstrap provides a way of assessing the size of this small sample bias.

8This is accomplished by simple linear transformations which are applied to the ML

estimates and to the bootstrapped standard errors.

9This amounts to running regression of each of the NOMINATE coordinates on both of

IDEAL coordinates for each of the posterior draws from IDEAL. The original draws from

IDEAL are then replaced with the predicted values from the regressions. Identification of

the IDEAL model by post-processing the MCMC output is Jackman’s preferred method of
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identification when multiple dimensions are to be estimated (personal correspondence).

10The IDEAL estimates presented in this section are post-processed as in the previous

section. In this case, only one dimension is extracted and the postprocessing involves simply

removing (arbitrary) variation in scale location across posterior draws.

11Londregan and Snyder (1994) use a similar bootstrap procedure to test for committee

outliers. However, their estimates of Senators locations are based on interest groups’ rating

scores.

12Brownstone and Valletta (1996) take as similar approach in a related area.
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Estimated Legislator Locations from the W-NOMINATE Model,

90th Senate
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Figure 1: Shows the estimated legislator locations in two dimension based on roll calls taken
in the 90th Senate. Squares represent Democrats. Circles represent Republicans. The
vertical and horizontal lines through each estimate show the 95 percent confidence intervals
for each coordinate of a given legislator’s position. For most Senators the correlation between
the estimated first and second dimension estimates is very low. Normal theory confidence
ellipses are shown for Senators whose first dimension coordinate is correlated with their
second dimension coordinates at |ρ| > 0.15. This correlation results from the identifying
constraint that Senators be located in the unit circle.
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Bootstrapped and Conditional Standard Error Estimates from the W-NOMINATE Model, 90th Senate
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Figure 2: The first row of panels shows bootstrapped standard error estimates plotted against each other and against the
conditional standard error estimates that take the estimated roll call parameters as known. As expected, the conditional
standard errors understate the degree of uncertainty in most cases, particularly for legislators with extreme positions. The
second row of panels plots the bootstrap estimates of the standard errors of the scores against the standard error estimates that
condition on the estimated roll-call parameters.
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Estimated Legislator Locations from the Quadratic Normal Model,

90th Senate
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Figure 3: Shows the estimated legislator locations in two dimensions based upon roll calls
taken in the 90th Senate. Squares represent Democrats. Circles represent Republicans. The
vertical and horizontal lines through each estimate show the 95 percent confidence intervals
for each coordinate of a given legislator’s position. For most Senators, the correlation between
the estimated first and second dimension estimates is very low. Normal theory 95 percent
confidence ellipses are shown of Senators whose first dimension coordinate is correlated with
their second dimension coordinates at |ρ| > 0.3.
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Bootstrapped and Conditional Standard Error Estimates from the Quadratic Normal Model, 90th Senate
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Figure 4: The first row of panels shows bootstrapped standard error estimates plotted against each other and against the
conditional standard error estimates that take the estimated roll call parameters as known. As expected, the conditional
standard errors understate the degree of uncertainty in most cases, particularly for legislators with extreme positions. Not
shown on right panel is Senator Goodell whose coordinates would be (0.30, 0.71). The second row of panels plots the bootstrap
estimates of the standard errors of the QN scores against the estimated Senator locations. Not shown on the right panel is
Senator Goodell whose coordinates in that plot would be (−0.97, 0.30).
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Estimated Legislator Locations from IDEAL,

90th Senate
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Figure 5: Shows the estimated legislator locations in two dimensions based upon roll calls
taken in the 90th Senate. Squares represent Democrats. Circles represent Republicans. The
vertical and horizontal lines through each estimate show the 95 percent credible intervals for
each coordinate of a given legislator’s position. For most Senators, the posterior correlation
between the estimated first and second dimension estimates is very low. Normal theory 95
percent credible ellipses are shown of Senators whose first dimension coordinate is correlated
with their second dimension coordinates at |ρ| > 0.3.
??
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Estimated Positions and Standard Errors from IDEAL, 90th Senate
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Figure 6: The first panel plots posterior uncertainties in the first dimension ideal points against the uncertainties in the second
dimension ideal points as expected the first dimension ideal points are generally more precisely estimated (most of the point lie
above the 45 degree line). The second and third panels plot the first and second dimensional ideal points against their posterior
standard deviations (standard errors). Extreme members are found to have larger standard errors in IDEAL.
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Comparisons of One-dimensional Ideal Point Estimates and their Standard Errors, 90th Senate
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Figure 7: Standard errors estimates made by a given pair methods and for a given issue dimension are plotted against each
other. Notice that aside from identifying Goodell’s location as highly uncertain (due to his abbreviated voting record), there is
relatively little agreement among the three methods as to which members are more or less precisely estimated.
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Size of Rank Confidence Interval versus Estimated Rank for Three Ideal Point Models, 90th Senate
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Figure 8: Plots the estimated rank position of each Senator in the 90th Senate against the length of the bootstrapped confidence
interval of each Senator’s rank position estimate. In all cases, the moderates and extremists have very small confidence intervals
while confidence intervals are much larger for those between the center and the wings.
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Sampling or Posterior Distributions for Three Ideal Point Models, 105th Senate
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Figure 9: Shows the estimated sampling distributions of the ideal point estimates of five members of the 105th Senate based
on three models/estimators.
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Correlation Among Ideal-Point Estimates and Among Their Standard Errors

from Three Different Estimators, 90th Senate

Quadratic Normal NOMINATE NOMINATE
and and and

IDEAL IDEAL Quadratic Normal
First dimension:

Estimate 0.99 0.99 0.99
Standard error 0.25 0.70 0.16

Second dimension:
Estimate 0.97 0.99 0.98
Standard error 0.53 0.46 0.16

Table 1: Shows the correlations among the ideal point estimates and standard errors of
Senators’ ideal points as estimated by W-NOMINATE, QN, and IDEAL. For IDEAL, the
“standard errors” are posterior standard deviations.
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Uncertainty in ideal point estimates, 90th Senate

Standard deviation “Signal-to-
Average SE of scores noise ratio”

First dimension:
NOMINATE 0.07 0.56 8.1
Quadratic-Normal 0.05 0.42 8.4
IDEAL 0.05 0.55 11.8

First dimension:
NOMINATE 0.08 0.51 6.3
Quadratic-Normal 0.08 0.35 4.6
IDEAL 0.07 0.48 6.7

Table 2: Average standard errors are the average of the bootstrapped standard error esti-
mates across Senators for the NOMINATE and Quadratic Normal models and the average
posterior standard deviations for the IDEAL models. The second columns shows the stan-
dard deviation of the estimated scores across the 100 Senators. The “Signal-to-noise ratio”
is the ratio of the first column to the second.
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Uncertainty in ideal point estimates, 105th Senate

Standard deviation “Signal-to-
Average SE of scores noise ratio”

NOMINATE 0.059 0.671 11.37
Quadratic-Normal 0.033 0.740 22.30
IDEAL 0.043 0.555 12.90

Table 3: Average standard errors are the average of the bootstrapped standard error esti-
mates across Senators for the NOMINATE and Quadratic Normal models and the average
posterior standard deviations for the IDEAL models. The second columns shows the stan-
dard deviation of the estimated scores across the 100 Senators. The “Signal-to-noise ratio”
is the ratio of the first column to the second.

34



Location of the Median Senator, 105th Senate

Method Estimate S.E. 95 percent CI
NOMINATE 0.14 0.04 (0.06,0.22)
QN 0.26 0.03 (0.20,0.32)
IDEAL -0.00 0.02 (-0.03,0.03)

Table 4: Shows the estimated median Senator’s location for each of three models.
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Location of the Filibuster Pivot, 105th Senate

Method Estimate S.E. 95 percent CI
NOMINATE -0.52 0.04 (-0.59,-0.45)
QN -0.47 0.03 (-0.54,-0.44)
IDEAL -0.41 0.02 (-0.46,-0.38)

Table 5: Shows the estimated location and standard error of the filibuster pivot in the 105th
Senate.
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Who was the Median Senator in the 105th Senate?

NOMINATE QN IDEAL
Chafee 0.005 0.003 0.001
Snowe 0.157 0.068 0.089
D’Amato 0.243 0.201 0.301
Collins 0.595 0.728 0.609

Table 6: Table shows for NOMINATE and QN the bootstrapped sampling distribution over
the identity of the median Senator in the 105th Senate. For the Bayesian IDEAL model,
each value is the posterior probability that a given member is the median.
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Who was the Filibuster Pivot in the 105th Senate?

NOMINATE QN IDEAL
Bryan ∗ ∗ 0.016
Kohl ∗ 0.013 0.048
Bob Kerrey 0.011 0.004 0.002
Biden 0.012 0.004 0.008
Moynihan 0.022 0.027 0.031
Reid 0.027 0.014 0.015
Robb 0.031 0.064 0.079
Ford 0.033 0.061 0.092
Lieberman 0.056 0.093 0.121
Landrieu 0.068 0.018 0.005
Bob Graham 0.103 0.173 0.193
Hollings 0.161 0.198 0.226
Baucus 0.188 0.234 0.145
Byrd 0.213 0.075 0.019

Table 7: Table shows for NOMINATE and QN the bootstrapped sampling distribution over
the identity of the filibuster pivot Senator in the 105th Senate. For the Bayesian IDEAL
model, each value is the posterior probability that a given member is the filibuster pivot.
∗ = less than 0.001.

38


