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The partial derivatives of the squared error loss function for the metric unfolding problem
have a unique geometry which can be exploited to produce unfolding methods with very desirable
properties. This paper details a simple unidimensional unfolding method which uses the geometry
of the partial derivatives to find conditional global minima; ie., one set of points is held fixed and
the global minimum is found for the other set. The two sets are then interchanged. The procedure
is very robust. It converges to a minimum very quickly from a random or non-random starting
configuration and is particularly useful for the analysis of large data sets with missing entries.

Introduction

In the metric unfolding problem the data are assumed to be Euclidean distances plus
some unknown observational error. Let x; be the ith individual’s estimated coordinate
(i=1,..., p) on the kth dimension (k = 1, ..., 5) and let z;, be the estimated coordinate of
the jth stimulus (j = 1, ..., g) on the kth dimension. The corresponding s length vectors
will be denoted as x; and z;. The estimated distance between the ith individual and the jth

stimulus is therefore
1/2
zj = [ Z (e — jk)Z:] . (1

Let D*!/? be the p by q matrix of data, let D*/? be the p by q matrix of “true” but
unknown distances, and let E be a p by ¢ matrix of error. Assume that

D*'? = p'? + E. ©

1 will work with the standard squared error loss function
—wEE=3Y Yei=3 Ys—dy 3)

i=1 j=1 i=1 j=1

The partial derivatives of the z; and x;, can be written as

op

5ij = =2 ‘gl(zﬂu - zjk)’ (4)
K3
6x£k =2 Z (xxk; Xix), (5)
where
d*
Zji = X + = 7. L (2 — Xu), (6)
ij
sy, 2 — - éi*l Y — 2
xlk} zjk id (xxk z]k)' (7)

i
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The Geometry of the Partial Derivatives

Gleason (1967) was the first to point out one aspect of the unique geometry of these
partial derivatives; namely, as (6) and (7) show, they involve a summation of equations of
straight lines. For example, Figure 1 shows the geometry of (6) in the case of two dimen-
sions.

A further unique property of the geometry of these partial derivatives is that the
squared distance between the points z; ; {the k-length vector of the z;) and z; is equal to
the squared error between df; and 4;;. That is,

eizf = Z (zjwi — ij)2 = (d¥ — dij)z
k=1
(see figure 1). A similar expression holds for x; ; and x;.

In terms of this geometry, the update formulas for the steepest descent method (when
the step size is fixed at one) have an interesting form. They can be written as

z {3
>z
=
o = ®
J h
Z X
xgz«» 1 . %’ 9

where h is the iteration number. The new x; and z;, are simply the centroids of the points
produced by the corresponding straight line equations. Intuitively, the process can be
conceptualized as follows. Imagine that the X set of points is fixed and z; is placed some-
where in the space. Think of the d¥ as vectors attached to the respective x; and aim them
at z; (see Figure 2 for a p = 5, s = 2 example). At the end of the vectors aimed at z;, place
points (the z; ; in Figure 2A). Now move z; to the centroid of these points and once again
aim the d vectors so they are pointing at z; (zi”’ in Figure 2B).
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FIGURE 1
Parametric equation of a straight line.



FIGURE 2
Five point example.
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That the sum of squared error is reduced is clear from the geometry; that is

P s P s
e =Y YCR-drs Y Y- Y Ye- R - S
i=1 i=1 k=1 i=1 k=1 i=1 k=1

The third and fourth terms of the inequality are true because 27, by (8), is the centroid of

the z$}). The second and third terms of the inequality are true because the z{}) are com-

puted by aiming the d¥ vectors at z{®. The z{}) are computed by aiming at z{"’. Hence, for
every ith term in the summatlon it w1ll be the case that

s

i (2) 2(2))2 Z ﬁl) Z%)

This geometrical fact is shown in Figure 2C for two dimensions. Figure 2C is the same as
Figures 2A and 2B except that only x,, z{", z{?, 2$!) and z{, are shown for clarity. The
partial circle in Figure 2C has radius 4. For any point in the plane, the shortest distance
from the point to the circle is found by passing a line from the point through the center of
the circle. Hence the distance from z{* to z{%) must be shorter than the distance from z{?
to z§!} (the dotted line). A similar argument holds for higher dimensional spaces. Hence,
the mequality holds.

The fact that the sum of squared error, using (8) and (9), will always decrease or
remain the same, is very unusual. For most nonlinear procedures, a step size of one does
not guarantee error reduction. Here it does.

Because of this geometry, several different gradient procedures are possible. One set
of points can be held fixed and the other set repeatedly estimated as described above. This
process eventually arranges the d vectors so that they all are aimed at the centroid of the
points placed at the ends of the vectors——when this occurs, a minimum is reached. The
process can then be repeated with the other set of points held fixed. Another procedure,
which is basically the same as the first, is to hold one set fixed and estimate the other set
only once (in contrast to the first procedure where the set is repeatedly reestimated), hold
it fixed and estimate the first only once; and so on (hereafter referred to as the standard
gradient procedure).

Given this geometry, 4 can be minimized without the use of update formulas of the
form (8) and (9). The update formulas are, in effect, providing new “targets” for the d¥
vectors. No targets are necessary for convergence to occur. Conceptually, the gradient
process embodying (6)+9) can be seen as a way of drawing the ends of the df vectors
attached to one set of points as close together as possible. Viewed from this perspectlve, it
does not matter whether or not all the d}; vectors are moved simultaneously. The z; ; can be
brought closer together by moving one d vector at a time. This will always reduce u. In
fact, any subset of z; ; can be moved closer to the remaining z; ; by aiming them at the
centroid of the second set. This process is fundamentally different from a standard gradi-
ent procedure and other procedures that use modifications of (4) and (5) to arrive at
update formulas (e.g., Guttman’s (1968) C-matrix method; DeLecuw (1977), and Heiser
and DeLeeuw {1979a,b)). In these and other similar procedures, the new estimates of one
set of points are weighted or unweighted sums of all the points in the other set.

Conditional Global Minima in One Dimension

All the procedures discussed above will converge to a solution of the partial deriva-
tives (however, provision must be made in all the procedures for the possibility that some
x; may equal some z; at each step of the iteration). There is no way to guarantee that the
solution found by any of the procedures is the global minimum. Even if one set of points is
held fixed, there is no way to guarantee that the conditional global minimum (i€., con-
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ditioned on one set being fixed) for the other set will be found unless a grid search is
performed. This is a problem particularly in one dimension. As Spence (1978, p. 216)
notes: “Most scaling algorithms are fairly robust in most situations, However, suboptimal
solutions do occasionally occur, especially in one dimension...."

In one dimension, the geometry shown in Figures 1 and 2 can be exploited to pro-
duce a simple procedure that finds the global minimum for one set of points when the
other set is held fixed. Figure 3 shows five individual points arrayed along one dimension.
The five points are shown as the centers of circles with the distances as the radii at the top
of Figure 3 for pictoral convenience.
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Five point one dimensional example.
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Suppose the initial estimate of z; is to the left of x,, as shown in line A of Figure 3.
The z; ; points produced by aiming the d}j vectors at z; are represented as small circles on
the line. It is immediately obvious from the top part of the figure that the global minimum
(the only minimum in this example) is between x, and x;. This situation is represented on
line C, which shows the z; ; produced by placing z; between x, and x;. Notice that when
z;is moved from anywhere in the region to the left of x, (line A) to anywhere in the region
between x; and x, (line B) there is only one change in the configuration of z; ; points;
namely, z; |, the point produced by aiming x, at z; has switched from the left of x; to the
right of x, because z; is now to the right of x,. Similarly, when z; is moved from the
region between x, and x, to the region between x, and x, (line C} the only change in the
z; ; configuration is z; ,. In sum, when z; is moved across the dimension from the left to
the right, each time it passes an x; point the corresponding z; ; point switches to being on
the same side of x; as'z;.

The geometry of Figure 3 shows the truth of the following simple theorem:

Theorem: In one dimension, if X is held fixed, then a minimum exists if and only if
Y.7_, z; ./p falls in the same region as z;.

To see the truth of the theorem, consider Figure 3 again. There are p + 1 regions z; could
be in. For each of these regions, there is a corresponding configuration of z; ; (lines A
through F). Each of these p + 1 configurations has a centroid— ) 7., z; ;/p. The centroid
of a particular configuration can also fall in any of the p + 1 regions. Label this centroid
2. If 242 falls in the same region as z{", it will reproduce itself because when it is the
target of the x;, the same z; ; configuration will be produced. A similar theorem holds
when Z is held fixed.

The geometry of Figure 3 can be exploited to produce a very simple algorithm which
finds the global minimum for one set of points when the other set is held fixed. Suppose
one set of points is placed in ascending order as shown in Figure 3. Following Figure 3,
first compute the pz; ; points for z; placed to the left of the smallest x; (x, in the figure).
The formula for the z; ; is simply

— *
zj = X; — df;

Compute Y ., z; ; and ) 7., zj; and store them. In the second step, assume that z; is
between the two smallest x; (x; and x, in the figure). To get the correct sum of the z; ;,
simply take the stored sum from the previous step, subtract off the z; ; corresponding to
the smallest x; from the previous step, and add on the new z; ; from this step. As noted
above, only one z; ; value will change each time an x; is crossed. In terms of Figure 3

4 P

_ id * *
ZZ§??W)— Zzg"’,‘)“(x,—dlj)-i-xl +d1j.
i=1 i=1

Now compute the sum of squares for the z; ; using

4 5 p 2
p sz,i_< Zj,i)
1

i=1 i=

for the old and new and store whichever Y 7., z; ; corresponds to the minimum sum of
squares (the one for which the z; ; are the closest together). Now assume that z; falls
between the second and third smallest x; (x, and x5 in Figure 3) and repeat the above
steps storing the current sum of z; ; and zZ,; and the sum of z; ; which corresponds to the
minimum SSE found thus far. This process is continued until z; is assumed to be the right
of the largest x;. At the end of this process ) 7., z; /p corresponding to the minimum
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SSE now becomes z;—the global minimum point. Note that this procedure requires only
two loops of size p for each z;. In the first loop, the starting values of the z; ; are sequen-
tially replaced by new values produced by moving the “target” (z;) past each x;.

In summary, given a starting configuration, the conditional global minimum (CGM)
algorithm is

Rank order X

Compute starting values of z; ; (loop of size p for each z;)
Find conditional global minimum (loop of size p for each z))
Rank order Z computed at step 3

Compute starting values of x; ; (loop of size g for each x;)
Find conditional global minimum (loop of size g for each x;)

I e

One pass through 1-6 (or 4-6, 1-3) is equivalent to roughly 24 iterations of a standard
gradient procedure. It takes 2pg computations in a standard gradient to get new X and Z
in contrast to 4pg computations plus the rank ordering calculations. The rank orderings
do not add significantly to the time it takes to compute 1-6 because very efficient algo-
rithms exist to rank order real numbers.

The CGM procedure guarantees that one set of points is at the global minimum
conditioned on the other set being fixed. The sets are interchanged and the set that was
fixed is now placed at the global minimum conditioned on the other set being fixed. The
sum of squared error never increases—it decreases monotonically. When convergence
occurs, the two sets reproduce each other. This is also true, by definition, of other pro-
cedures. However, the CGM procedure converges to a configuration in which every point
is at its global minimum when the other points are fixed. Other procedures only converge to
a configuration in which every point is at a local minimum when the others are fixed. If
such a configuration was used as the starting coordinates for the CGM procedure it
would descend to the stronger form of local minimum.

The overall global minimum corresponds to a configuration in which no subset of
points can be moved vis a vis the remaining points without increasing the sum of squared
error. Although the CGM procedure cannot guarantee convergence to this overall global
minimum, it does converge to a particularly stable form of local minimum. Monte Carlo
work, summarized below, shows that the configurations that correspond to these stable
local minima are almost always closer to the true configurations than those produced by
other procedures.

I performed a Monte-Carlo study in order to test the ability of the CGM procedure
to recover D2 when error is present in the distances (D*!/?), The distance matrices were
produced by generating random coordinates for X and Z from a uniform [0, 1] distri-
bution. Three different types of error were extensively tested. In the first, the d* were
assumed to be normally distributed with mean d and constant variance o2. Under this
assumption, X and Z which minimize the loss function (3} will be maximum likelihood
estimates. In the second error model, the d* were assumed to be normally distributed with
mean d and variance (6d)?. This model is more realistic than the former since one would
expect that perceptual error would be small for stimuli near an individual and somewhat
larger for distant stimuli. Finally, in the third model, the logarithm of d* was assumed to
be normally distributed with mean log d with constant variance ¢2. As Ramsay (1977, p.
245) notes: “The lognormal distribution attaches positive probability to all positive values
of [d*], has an expectation which is close but not exactly equal to [d], and has consider-
able positive skewness.” This distribution is more realistic than the first two because of its
skewness. When d is small, the perceptual error must be positively biased making a sym-
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metric distribution of error dubious. (In the first two models, if a negative 4* was pro-
duced, it was replaced by its absolute value.)

A representative portion (p = 40, g = 10, five levels of error) of the resuits of the Monte-
Carlo study are shown in Table 1. Other results are summarized below. The error intro-
duced into the D/ matrices was increased in stages to correspond to a 0 — .7 range of
STRESS (first column of Table 1). The error level was controlled by varying the standard
deviation.

The top third of Table 1 reports the results for the normal, constant variance model,
the center third reports the results for the normal, variable variance model, and the
bottom third reports the results for the log normal model. Each third of Table 1 is divided
into two sections. The first section, “Eckart-Young Starts”, shows the Monte-Carlo results
when the starting configuration for each procedure was generated from an Eckart-Young
(1936) decomposition of the double centered distance matrix. The second section,
“Random Starts”, shows the results when the starting configurations were randomly gen-
erated. Each section shows the recovery of the d* as measured by STRESS and the recov-

Table 1

MONTE-CARLO RESULTS

NORMAL
Eckart-Young Starts Random Starts
Error Recovery of Recovery of Recovery of Recovery of
Introduced Distances Coordinates Distances Coordinates
Std. C std. C std., C std. 4
CGM Grad., Matrix CGM Grad. Matrix CeM Grad. Matrix CGM Grad. Matrix
@ — bt —— w—— _— — i — e — — . S—
.10 .082% 082 .082 .998# .998 .998 L082% .355 2331 .998# .672 .720
(.003) (.003) (.003) (.000) (.001) (.000) (.003) (.205) (.219) (.000) (.249) {.272)
.25 L2185 .218 .218 .982 .978 .978 .218 449 .386 .982 .577 704
(.009) (.011) (.01L) (.005) (.010) (.009) (.009y  (.130) (.168) ¢.006) (.199)  (.285)
40 335 L343 L3464 945 .929 .927 .37% .537 467 .883 474 654
(.017) (.014) (.014) (.015) (.019) (.019) (.030)  (.099) (.128) (.038) (.177)  (.271)
.55 452 455 459 .851 .853 .850 469 611 .597 .791 .370 459
(.016) (.016) (.020) (.034) (.038) (.032) (.022) (.082) (.078) (.048) (.164) (.218)
W70 .568 591 .589 .590 .600 .610 .575 674 664 452 .320 349
(.014) (.034) (.031) (.130)  (.118)  (.120) (.019)  (.044)  (.067) (.188)  (,131)  (.202)
NORMAL VARIABLE VARIANCE
10 .0%6 L0896 .0%6 .998 998 .09 .0%% 398 L343 .998 .632 JT24
(.005) (.004) (.004) (.001) (.001) (.001) (.004)y  {.178)  (.218) (.001y (.213) (.270)
«25 .221 221 .221 .988 987 .987 .221 .372 .389 .988 .736 .758
(.010) (.010) (.010) (.004)  (.004) (.003) (.011y  (.133) (.191) (.004)  (.204)  (.265)
W40 .349 349 349 .966 1966 .964 .353 460 501 .965 .736 704
(.016) (.016) (.016) (.010) (.015) (.015) {.016) (.113) (,133) (.009) (.208) (.238)
+55 482 488 .488 .931 .905 .905 .509 592 .600 .905 .669 .676
(,022) (.029) (.029) (.020) (.057) (.057) (.039) (.103) (.196) (.027) (.211) (.212)
.70 .586 606 605 .875 .804 .800 .606 .692 683 .858 .615 634
(.022y (.049) (.049) (.036) .129) {.141) €.033) {.104} (.096) {.053) (.233) (.209)
LOG-NORMAL

.10 .097 097 .097 .998 .998 .998 .097 .395 344 .988 .635 124
(.004) (.004) (.004) (.001) (.001) (.001) (.004) (.175) (.217) (.000) (,212) (.270)
v25 214 214 214 .989 .988 989 2214 357 L3846 .989 .763 .760
(.008) (.008) (.008) (.002) (.002) (.002) (.008) (.129) (.190) (.003) (.192) (.264)
.40 +345 W345 345 4962 .962 .961 349 473 485 .961 704 .710
(.014) (.014) (.014) (.015)  (.014)  (.014) (.016)  (.130)  (.133) (.014)  (.248)  (.252)
55 4T3 .526 .523 .922 762 777 493 .596 .603 910 .636 634
(.026) (.111) (.106}) {.021) (.278) {.257) (.032) {.139) (.129) (.020) (.311) (.271)
.70 .631 727 <720 W17 b4 453 689 769 781 722 443 410
(.103) (.134) (.125) (.314) (.340) (.324) {.135) (.124) (.099) {.210) (.278) (234}

(@Mean STRESS introduced into the true distance matrices
+Entries are mean STRESS values. Standard deviations are in parentheses.
#Entries are mean Pearson r-square values. Standard deviations are in parentheses.



KEITH T. POOLE 319

ery of the true coordinates as measured by the Pearson r-square between the true and
reproduced coordinates. Each entry is the average of 10 runs made at the indicated error
level with the cooresponding standard deviation shown in parentheses below the average.
A step-size of 1 was used in the standard gradient procedure.

When Eckart-Young starts are used at low levels of all three types of error, the
standard gradient and C-matrix procedures achieve results equally as good as the CGM
procedure. At higher levels of error, the CGM procedure is clearly better—especially with
the log-normal model. When random coordinates are used as starts, the CGM procedure
is markedly superior to the other two procedures. The CGM procedure recovers the input
distances and the true coordinates almost as well from random starts as it does from
Eckart-Young starts. In addition, the standard deviations for the CGM procedure are
about the same level of magnitude for either type of starts which indicates that the pro-
cedure is very stable. That is, the CGM procedure recovers basically the same configura-
tion regardless of starting configuration. The r-square between the configurations recov-
ered from an Eckart-Young as opposed to a random start is almost always greater than
95 regardless of the error model.

Less extensive testing of other matrices and at other levels of error besides those
shown in Table 1 revealed that the accuracy advantage of the CGM procedure over the
other procedures increases with matrix size. Holding p fixed and increasing g or holding ¢
fixed and increasing p—with the level of error held constant—resulted in an increase in
the accuracy advantage for the CGM procedure.

Finally, in addition to being more accurate and stable, the CGM procedure is, on
average, 30 to 35 percent faster in terms of CPU time to convergence. It converges in
about three iterations (an iteration being one pass through steps 1-6 above) from an
Eckart-Young start and about six iterations from a random start.

The robustness of the CGM procedure with starting configurations is particularly
useful when there is missing data. When a substantial number of distances are missing in
D*!/2, producing a good starting configuration is quite difficult. This is no hindrance to
the CGM procedure. In fact, the CGM procedure has the further advantage that only
coordinates for one set of points are necessary to start the process. If starting coordinates
are available for both sets of points, then the CGM procedure can be conducted in “paral-
lel” for both sets which provides a check upon the final configuration. For example, given
starting values for X, steps 1-3 can be performed to arrive at an estimate of Z. This
estimate plus the original (but unused) starting values for Z produce two starting configu-
rations for 4-6 thereby producing two new estimates for X; and so on. Given the sim-
plicity and speed of the CGM algorithm, a plethora of starting configurations (including
random starts) can be tried in one run of the program thereby providing the researcher
with some confidence in the final configuration.

The CGM algorithm can also be applied with equal success to the metric similarities
problem (p = ¢, X = Z). For small matrices, the CGM procedure is always faster and
more accurate but the accuracy advantage is not significant. However, for large matrices
the accuracy advantage is significant and the speed of the procedure gives it a particular
advantage. When the similarities matrix is quite large, decomposition of the matrix to
obtained starting coordinates can be computationally burdensome. Because the CGM
procedure produces basically the same coordinates from a random start as it does from
an Eckart-Young start, large similarities matrices can be scaled easily with the CGM
procedure. As a consequence, because of its speed and its accuracy and stability over a
variety of error models, the CGM procedure would be a useful adjunct to any general
purpose scaling program.
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An Application to Interest Group' Ratings of Members of Congress

The robustness and speed of the CGM procedure make it very useful for performing
unidimensional scaling of large data sets with missing data. As an example, consider
interest group ratings of members of Congress.

Every year a wide variety of interest groups issue ratings of the members of the
House and Senate. These ratings are expressed in percentage terms—that is, from 0 per-
cent to 100 percent approval of the way the Representative/Senator voted on issues of
concern to the group. In spatial terms, a rating of 100 means that the interest group is
very close to the legislator because the legislator voted exactly as the group would have if
it had been in the legislature. A lower rating means that the group is less pleased with a
legislator and is therefore more distant than if the rating was higher.

To convert the ratings to distances, they were subtracted from 100 and divided by
50; that is

where §;; is the rating of the ith member of Congress by the jth interest group. This
transforms the ratings from a 0-100 scale to a 2-0 scale. The division by 50 has no effect
upon the recovery of the coordinates. It is done only to confine the recovered coordinates
to a —1/+1 range. Elsewhere (Poole, 1981; Poole and Daniels, 1984), I have discussed
issues relating to (10} in detail, and I will not repeat them here.

Table 2 shows the unfolding results for the 96th Congress. The interest group ratings
are substantially one dimensional. A one dimensional Euclidean configuration explains
approximately 82 percent of the variance of 19,000 ratings in 1979 and 77 percent of the
variance of 15,000 ratings in 1980. The quality of the fit for 1979 can be seen clearly in
Figure 4. Figure 4 is the Shepard diagram for the 1979 unfolding. Fitting a regression line
through this scatter plot (with d* as the dependent variable and d as the independent
variable) produces an intercept of .040 and a slope of .970. The Pearson r-square of the
regression is the value shown in Table 2.

Table 3 displays the unfolding results by interest group (not all of the groups had
issued their ratings for 1980 when these data were analyzed). The interest groups cover
almost the entire spectrum of contested issues in American politics: peace groups,
womens’ groups, labor unions, civil liberties groups, senior citizens’ groups, consumer
groups, Christian fundamentalists, and so on. The fits for all groups except two of the
farmers’ organizations (NFU and NFO) are uniformly high. The recovered dimension is
the standard left/right liberal/conservative continuum familiar to students of politics.

TABLE 2
Unidimensional Unfolding Results for the 96th Congress

1979 1980
One Dimensional Fit .8167 .7701
(Pearson r-square)
Interest Groups 37 28
Senators 100 100
Representatives 435 436

Number of Ratings 19,339 14,965
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SHEPARD DIAGRAM FOR 1 DIMENSIONS: INPUT DATA= HORIZONTAL DIMENSION: GUTPUT DATA = VERTICAL DIMENSION *
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FiGURE 4

Shepard plot for 1979 interest group data.

Conclusion

The Conditional Global Minimum procedure is a unidimensional scaling method
which exploits the unique geometry of the partial derivatives of the squared error loss
function. It is a very robust procedure; it converges to a minimum very quickly from a
random or non-random starting configuration. This makes the CGM procedure particu-
larly useful in analyzing matrices with many missing elements where it is difficult to
obtain good starting coordinates as well as large matrices, that is, matrices where p and g
are both large, thereby making decomposition of the matrix particularly burdensome
computationally.

In addition, by definition, the CGM procedure does not get caught in local minima
at any stage of the iteration. Local minima are a serious problem in unidimensional
scaling. The robustness of the CGM procedure with arbitrary starting configurations, and
the fact that only starting coordinates for one set of points (in the unfolding problem) are
needed to begin the procedure, allows for great flexibility in program design. That is,
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TABLE 3
Unfolding Results by Interest Group
Location 53
Interest Group 1979 1980 1979 1980
American Civil Liberties Union -1.062 ~1.064 684 .886
American Conservative Union 1.136 1.168 943 .887
Americans for Constitutional Action 1.150 1.095 .916 .869
Americans for Democratic Action -1.090 -1.032 .933 934
American Farm Bureau Federation .761 .607
American Federation of State, County and
Municipal Employees -.946 ~.976 775 479
American Federation of Teachers -.995 -1.008 .B36 .840
American Security Council .942 .928 .917 840
Building and Construction Trades -.713 +562
Bread for the World -.795 ~.809 .863 .867
Chamber of Commerce of U.S. 1.002 569 917 274
CCUS 2nd Rating® .895 .879
Committee for the Survival of a Free Congress# 1.087 1.028 .958 .907
CF5C Economic Issues 1.066 1.031 .911 .867
CFSC Defense Issues 1.085 .930 922 .839
CFSC Social Issues 1.119 1.116 914 .830
Child Welfare League of America -.789 -.976 .852 .780
Christian Voice 1.080 .850
Coalition for a New Foreign Military Policy -1.099 -1.115 .698 .798
Committee on Political Education ~.920 -.997 .907 .815
Congress Watch «1.115 -1.070 .854 .849
Conservative Coalition® .884 .915 947 .952
Consumer Federation of America ~1.166 .884
Friends Committee on National Legislation -1.028 -1.125 .884 .861
League of Conservation Voters -1.026 -1.003 .758 575
League of Women Voters -.920 ~-.876 .868 641
National Alliance of Senior Citizens .989 1.047 .907 .886
National Council of Seniox Citizens =.935 -.969 .877 .895
National Education Association -.960 .679
National Farmer's Organization -.127 -.350 .109 .350
National Farmer's Union -.405 .483
National Federation of Dependent Business 772 .788 .838 .801
National Taxpayer's Union 1.280 1.291 «761 739
National Womens' Political Caucus -.977 .818
President Carter® -.759 =754 .882 721
United Auto Workers -.969 -.963 .956 .919
United Mine Workers -1.029 843

*CCUS 1issued a second set of ratings for the Senate in 1979.

#CFSC issues four sets of ratings: one for all issues; one for Economic issues only; one
for defense issues only; and one for "social" (busing, etc.) issues only.

@ Compiled by Congressional Quarterly. The scores were corrected to remove absences.

several different starting configurations can be tested simultaneously thereby increasing
the reliability of the final configuration and any subsequent substantive interpretations.
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