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The partial derivatives of the squared error loss function for the metric unfolding problem 
have a unique geometry which can be exploited to produce unfolding methods with very desirable 
properties. This paper details a simple unidimensional unfolding method which uses the geometry 
of the partial derivatives to find conditional global minima; i.e., one set of points is held fixed and 
the global minimum is found for the other set. The two sets are then interchanged. The procedure 
is very robust. It converges to a minimum very quickly from a random or non-random starting 
configuration and is particularly useful for the analysis of large data sets with missing entries. 

Introduct ion 

In  the metric unfolding problem the data  are assumed to be Euclidean distances plus 
some u n k n o w n  observat ional  error. Let Xik be the ith individual 's  estimated coordinate  
(i = 1 . . . .  , p) on  the kth d imens ion  (k = 1 . . . . .  s) and  let Zjk be the estimated coordinate  of 
the j th  s t imulus ( j  = l, . . . ,  q) on  the kth dimension.  The cor responding  s length vectors 
will be denoted  as xl and  z~. The estimated distance between the ith individual  and  t h e j t h  
s t imulus is therefore 

I s 11/'2 
dtJ = k~=l ( x i k  - -  z j k )2  " (1) 

Let D .1/2 be the p by q matr ix  of data, let 151/2 be the p by q matrix of "true" but  

u n k n o w n  distances, and  let E be a p by q matr ix  of error. Assume that 

D,1/2 = ~t/2 + E. (2) 

I will work with the s tandard  squared error  loss funct ion 

P q P q 
# = tr E 'E  = E E e~ = E E (d* - -  d i j )  2. (3) 

t=x j=~ i=x j=x 

The part ial  derivatives of the zjk and  xik can be writ ten as 

a# P 
- - - 2  E ( z j k i  - Zjk), (4) 

OZjk i = 1 

Ot~ q 
- 2 E (x,kj - x,k), (5) 

~Xik j = 

where 

d.*. 
'J (Zjk - -  Xik),  Zjk i = Xik -~- - 7  

aii 

d.*. 
Xik~ = Zjk + -~- (Xik -- Z~k). 

dij 

(6) 

(7) 
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T h e  Geome t ry  o f  the  Par t ia l  Derivat ives  

Gleason (1967) was the first to point out one aspect of the unique geometry of these 
partial derivatives; namely, as (6) and (7) show, they involve a summation of equations of 
straight lines. For example, Figure 1 shows the geometry of (6) in the case of two dimen- 
sions. 

A further unique property of the geometry of these partial derivatives is that the 
squared distance between the points zj, i (the k-length vector of the Zjki) and zj is equal to 
the squared error between d* and d w That is, 

e 2 = ~ (Zik i -- Zig) 2 = (d* --  do) 2 
" T = I  

(see figure 1). A similar expression holds for xi, j and xi. 
In terms of this geometry, the update formulas for the steepest descent method (when 

the step size is fixed at one) have an interesting form. They can be written as 

P 

E 
( h + l )  i =1 

z j k  - , ( 8 )  
P 

q 
-" ..(h) 

"~ikj 

x ( h + l )  , / = l  ik = , ( 9 )  q 

where h is the iteration number. The new Xik and Zik are simply the centroids of the points 
produced by the corresponding straight line equations. Intuitively, the process can be 
conceptualized as follows. Imagine that the X set of points is fixed and zj is placed some- 
where in the space. Think of the d* as vectors attached to the respective x~ and aim them 
at zj (see Figure 2 for a p = 5, s = 2 example). At the end of the vectors aimed at z~, place 
points (the z~, i in Figure 2A). Now move z~ to the centroid of these points and once again 
aim the d* vectors so they are pointing at zj (Z~ 2) in Figure 2B). 

ZI2i 

Zj2 

Xi2 

. . . . . . . . .   zj,i 
. . . .  - . -  z j / / ;  

X i t 
I 
I 
! 
I 

Xil Zjt Zjli 

(z i - x i )  

FIGURE 1 
P a r a m e t r i c  equa t ion  of a s t ra igh t  line. 
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That the sum of squared error is reduced is clear from the geometry; that is 

r e~.2. '~ = 2 ,.,2) Z}k2)) 2 < I, Zju -- ~jk, = 
l.Z, j k  i - -  _ _  v U • U 

i = l  i=1 k = l  i=1 k = l  i=1 k = l  i=1 

The third and fourth terms of the inequality are true because z~ 2), by (8), is the centroid of 
the ~(1) The second and third terms of the inequality are true because the Z~k2~ are com- ~ ' j k i "  

(2~ The ~ )  puted by aiming the d* vectors at zj . "-sk~ are computed by aiming at z~ 1). Hence, for 
every ith term in the summation, it will be the case that 

f , (2) ,r,2)'~2 f ,  (1) ~zjk, - o j ~  , < ~ z ~ k ,  - z~2~) 2 
k = l  k = l  

This geometrical fact is shown in Figure 2C for two dimensions. Figure 2C is the same as 
Z (2) Figures 2A and 2B except that only xl, z~ 1), z~ 2~, z~.l~ and j,1, are shown for clarity. The 

partial circle in Figure 2C has radius d*. For any point in the plane, the shortest distance 
from the point to the circle is found by passing a line from the point through the center of 
the circle. Hence the distance from z~ 2~ to z~2~ must be shorter than the distance from z~ 2) 
to z ~  (the dotted line). A similar argument holds for higher dimensional spaces. Hence, 
the inequality holds. 

The fact that the sum of squared error, using (8) and (9), will always decrease or 
remain the same, is very unusual. For  most nonlinear procedures, a step size of one does 
not guarantee error reduction. Here it does. 

Because of this geometry, several different gradient procedures are possible. One set 
of points can be held fixed and the other set repeatedly estimated as described above. This 
process eventually arranges the d* vectors so that they all are aimed at the centroid of the 
points placed at the ends of the vectors--when this occurs, a minimum is reached. The 
process can then be repeated with the other set of points held fixed. Another procedure, 
which is basically the same as the first, is to hold one set fixed and estimate the other set 
only once (in contrast to the first procedure where the set is repeatedly reestimated), hold 
it fixed and estimate the first only once; and so on (hereafter referred to as the standard 
gradient procedure). 

Given this geometry,/~ can be minimized without the use of update formulas of the 
form (8) and (9). The update formulas are, in effect, providing new "targets" for the d.*. U 
vectors. No targets are necessary for convergence to occur. Conceptually, the gradient 
process embodying (6)-(9) can be seen as a way of drawing the ends of the d*. vectors U 
attached to one set of points as close together as possible. Viewed from this perspective, it 
does not matter whether or not all the d*j vectors are moved simultaneously. The zj, i can be 
brought closer together by moving one d,*. vector at a time. This will always reduce p. In IJ 
fact, any subset of z~,~ can be moved closer to the remaining zj,~ by aiming them at the 
centroid of the second set. This process is fundamentally different from a standard gradi- 
ent procedure and other procedures that use modifications of (4) and (5) to arrive at 
update formulas (e.g., Guttman's (1968) C-matrix method; DeLeeuw (1977), and Heiser 
and DeLeeuw (1979a,b)). In these and other similar procedures, the new estimates of one 
set of points are weighted or unweighted sums of all the points in the other set. 

Conditional Global Minima in One Dimension 

All the procedures discussed above will converge to a solution of the partial deriva- 
tives (however, provision must be made in all the procedures for the possibility that some 
xi may equal some zj at each step of the iteration). There is no way to guarantee that the 
solution found by any of the procedures is the global minimum. Even if one set of points is 
held fixed, there is no way to guarantee that the conditional global minimum (i.e., con- 
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ditioned on one set being fixed) for the other set will be found unless a grid search is 
performed. This is a problem particularly in one dimension. As Spence (1978, p. 216) 
notes: "Most scaling algorithms are fairly robust in most situations. However, suboptimal 
solutions do occasionally occur, especially in one dimension . . . .  " 

In one dimension, the geometry shown in Figures 1 and 2 can be exploited to pro- 
duce a simple procedure that finds the global minimum for one set of points when the 
other set is held fixed. Figure 3 shows five individual points arrayed along one dimension. 
The five points are shown as the centers of circles with the distances as the radii at the top 
of Figure 3 for pictoral convenience. 
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Suppose the initial estimate of z j  is to the left of x~, as shown in line A of Figure 3, 
The z j, i points produced by aiming the d.*.,~ vectors at z j  are represented as small circles on 
the line. It is immediately obvious from the top part of the figure that the global minimum 
(the only minimum in this example) is between x 2 and x3. This situation is represented on 
line C, which shows the zj .  ~ produced by placing z~ between x2 and x3. Notice that when 
zj is moved from anywhere in the region to the left of xl (line A) to anywhere in the region 
between x~ and x2 (line B) there is only one change in the configuration of z j .  ~ points; 
namely, z~, ~, the point produced by aiming x~ at z~ has switched from the left of x~ to the 
right of x~ because z j  is now to the right of x~. Similarly, when z i is moved from the 
region between x~ and x2 to the region between x2 and x3 (line C) the only change in the 
zj. ~ configuration is z j,  2. In sum, when z j  is moved across the dimension from the left to 
the right, each timb it passes an x~ point the corresponding z j, ~ point switches to being on 
the same side of x i a s ' z j .  

The geometry of Figure 3 shows the truth of the following simple theorem: 

T h e o r e m :  In one dimension, if X is held fixed, then a minimum exists if and only if 
~ = l  z j ,  i / P  falls in the same region as z i. 

To see the truth of the theorem, consider Figure 3 again. There are p + 1 regions zj could 
be in. For  each of these regions, there is a corresponding configuration of z j. i (lines A 
through F). Each of these p + 1 configurations has a c e n t r o i d - - ~  ~= 1 z j, i /P.  The centroid 
of a particular configuration can also fall in any of the p + 1 regions. Label this centroid 
Zj(2). If Z~. 2) falls in the same region as z~ 1), it will reproduce itself because when it is the 
target of the xi, the same z j, ~ configuration will be produced. A similar theorem holds 
when Z is held fixed. 

The geometry of Figure 3 can be exploited to produce a very simple algorithm which 
finds the global minimum for one set of points when the other set is held fixed. Suppose 
one set of points is placed in ascending order as shown in Figure 3. Following Figure 3, 
first compute the pz j ,  i points for zj placed to the left of the smallest x~ (x~ in the figure). 
The formula for the zj .  ~ is simply 

z j, ~ = x i - d *  

2 and store them. In the second step, assume that zj is Compute ~e= 1 zj ,  i and ~ '=1  z j, i 
between the two smallest x~ (xl and x:  in the figure). To get the correct sum of the zj, ~, 
simply take the stored sum from the previous step, subtract off the z j. ~ corresponding to 
the smallest xi from the previous step, and add on the new z~, ~ from this step. As noted 
above, only one z~. ~ value will change each time an xl is crossed. In terms of Figure 3 

P P 

~,z~."~ w~ S" z ~°'~ - (x~ - , t * )  + x l  + d~j. J,~ ~ ~ j , i  
i = 1  i=i 

Now compute the sum of squares for the z j, i using 

for the old and new and store whichever ~ '=1  z j ,  ~ corresponds to the minimum sum of 
squares (the one for which the z j, i are the closest together). Now assume that z~ falls 
between the second and third smallest x~ (x2 and x3 in Figure 3) and repeat the above 
steps storing the current sum of z j .  ~ and z~, i and the sum of z j, ~ which corresponds to the 
minimum SSE found thus far. This process is continued until zj is assumed to be the right 
of the largest xl. At the end of this process ~ ' =  x z j, i/P corresponding to the minimum 
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SSE now becomes z f--the global minimum point. Note that this procedure requires only 
two loops of size p for each z i. In the first loop, the starting values of the z j, ~ are sequen- 
tially replaced by new values produced by moving the "target" (z j) past each x~. 

In summary, given a starting configuration, the conditional global minimum (CGM) 
algorithm is 

1. Rank order X 
2. Compute starting values of zi. i (loop of size p for each z j) 
3. Find conditional global minimum (loop of size p for each z~) 
4. Rank order Z computed at step 3 
5. Compute starting values of xi. j (loop of size q for each x~) 
6. Find conditional global minimum (loop of size q for each x~) 

One pass through 1-6 (or 4-6, 1-3) is equivalent to roughly 2½ iterations of a standard 
gradient procedure. It takes 2pq computations in a standard gradient to get new X and Z 
in contrast to 4pq computations plus the rank ordering calculations. The rank orderings 
do not add significantly to the time it takes to compute 1-6 because very efficient algo- 
rithms exist to rank order real numbers. 

The CGM procedure guarantees that one set of points is at the global minimum 
conditioned on the other set being fixed. The sets are interchanged and the set that was 
fixed is now placed at the global minimum conditioned on the other set being fixed. The 
sum of squared error never increases--it decreases monotonically. When convergence 
occurs, the two sets reproduce each other. This is also true, by definition, of other pro- 
cedures. However, the CGM procedure converges to a configuration in which every point 
is at its global minimum when the other points are fixed. Other procedures only converge to 
a configuration in which every point is at a local minimum when the others are fixed. If 
such a configuration was used as the starting coordinates for the CGM procedure it 
would descend to the stronger form of local minimum. 

The overall global minimum corresponds to a configuration in which no subset of 
points can be moved vis a vis the remaining points without increasing the sum of squared 
error. Although the CGM procedure cannot guarantee convergence to this overall global 
minimum, it does converge to a particularly stable form of local minimum. Monte Carlo 
work, summarized below, shows that the configurations that correspond to these stable 
local minima are almost always closer to the true configurations than those produced by 
other procedures. 

I performed a Monte-Carlo study in order to test the ability of the CGM procedure 
to recover ~1/2 when error is present in the distances (D*I/2). The distance matrices were 
produced by generating random coordinates for X and Z from a uniform [0, 1] distri- 
bution. Three different types of error were extensively tested. In the first, the d* were 
assumed to be normally distributed with mean d and constant variance cr :. Under this 
assumption, X and Z which minimize the loss function (3) will be maximum likelihood 
estimates. In the second error model, the d* were assumed to be normally distributed with 
mean d and variance (crd) z. This model is more realistic than the former since one would 
expect that perceptual error would be small for stimuli near an individual and somewhat 
larger for distant stimuli. Finally, in the third model, the logarithm of d* was assumed to 
be normally distributed with mean log d with constant variance a 2. As Ramsay (1977, p. 
245) notes: "The lognormal distribution attaches positive probability to all positive values 
of [d*], has an expectation which is close but not exactly equal to [d], and has consider- 
able positive skewness." This distribution is more realistic than the first two because of its 
skewness. When d is small, the perceptual error must be positively biased making a sym- 
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metric distribution of error dubious. (In the first two models, if a negative d* was pro- 
duced, it was replaced by its absolute value.) 

A representative portion (p = 40, q = 10, five levels of error) of the results of the Monte- 
Carlo study are shown in Table 1. Other results are summarized below. The error intro- 
duced into the /~1/2 matrices was increased in stages to correspond to a 0 - . 7  range of 
STRESS (first column of Table 1). The error level was controlled by varying the standard 
deviation. 

The top third of Table 1 reports the results for the normal, constant variance model, 
the center third reports the results for the normal, variable variance model, and the 
bottom third reports the results for the log normal model. Each third of Table 1 is divided 
into two sections. The first section, "Eckart-Young Starts", shows the Monte-Carlo results 
when the starting configuration for each procedure was generated from an Eckart-Young 
(1936) decomposition of the double centered distance matrix. The second section, 
"Random Starts", shows the results when the starting configurations were randomly gen- 
erated. Each section shows the recovery of the d* as measured by STRESS and the recov- 

Table i 

E qkart-Youn~ Start, s, 

Error Recovery of 
Introduced Distances 

Std. C 
CGM Grad. Matrix CGM 

• i0 ~ .082" .082 .082 .99~ 
(.003) (.003) (.003) (.000) 

.25 .215 ,218 ,218 .982 
(.oo9) (.on) (.Oll) (.oo5) 

.40 .335 .343 .344 .945 
(.017) (.014) (.014) (.015) 

.55 .452 .455 .459 .851 
(.016) (.016) (.020) ( .034) 

.70 .568 .591 .589 .590 
( .014) ( .034) (.031) (.130) 

.I0 .096 .096 .096 .998 
(.004) (.004) (.004) (.OO1) 

.25 ,221 ,221 .221 .988 
(.010) (.010) (.010) (.004) 

,40 .349 .349 .349 .966 
(.016) (.0iS) (.016) (.010) 

.55 .482 .488 .488 .931 
(.022) (.029) (.029) (.020) 

.70 .586 .606 .605 ,875 
(.022) (,049) (.049) (.034) 

MONTE-CARLO RESULTS 

NORMAL 

Random Starts 

Recovery of Recovery of Recovery of 
Coordinates Distances Coordinates 

Std. C Std, C Std. C 
Grad. Matrix CGM Grad. Matr lx CG__MM Gr@d, Matrix 

.998 .998 .082* .355 .331 .99~# .672 .720 
(.001) (.000) (.003) (.205) (.219) (.000) (.249) (.272) 

.978 .978 .218 .449 .386 .982 .577 .704 
(.010) (.009) (.009) (.130) (.168) (.006) (.199) (.285) 

.929 .927 .375 .537 .467 .883 .474 .654 
(.019) (.019) (.030) (.099) (.128) (.038) (.177) (.271) 

,853 .850 .469 .611 .597 .791 ,370 .459 
(.038) (.032) (.022) (.082) (.078) (.048) (.164) (.218) 

.600 .610 .575 .674 .664 .452 .320 .349 
(.I18) (.120) (.019) (.044) (.067) (.188) (.131) (.202) 

NORMAL VARIABLE VARIANCE 

.998 .096 .096 .398 .343 .998 .632 .724 
( .001)  ( .001) ( .004)  ( .178)  ( .218)  ( .001)  ( .213)  ( .270) 

.987 .987 .221 .372 .389 .988 .736 .758 
(.004) (.003) (.011) (.133) (.191) (.004) (.204) (.265) 

.966 .964 .353 .460 .501 .965 .736 .704 
(.015) (.015) (,016) (.i13) (.133) (.009) (.208) (.238) 

.905 .905 .509 .592 .600 .905 .669 .676 
(.057) (.057) (.039) (.i03) (.196) (.027) (.211) (.212) 

.804 .800 .606 .692 .685 .858 .615 .634 
(.129) (.141) (.033) (.I04) (.096) (.053) (.233) (.209) 

LOG-NORMAL 

• 998 .998 .097 .395 .344 .988 .635 .724 
(.001) (.OOZ) (.004) (.175) (.217) (.000) (.212) (.270) 

.988 .989 .214 .357 .384 .989 .763 .760 
(.002) (.002) (.008) (.129) (.190) (.003) (.192) (.264) 

.962 .961 .349 .473 .485 .961 .704 .710 
(.014) (.014) (.016) (.130) (.133) (.014) (.248) (.252) 

.762 .777 .493 .596 .603 .910 .636 .634 
(.278) (.257) (.037) (.139) (.129) (.020) (.311) (.271) 

.444 .453 .689 .769 .78t  .722 .445 .410 
(.340) (.324) (.135) (.124) (.099) (.210) (.278) (.234) 

parentheses. 

• 10 .097 .097 .097 .998 
(.004) (.004) (.004) (.ool) 

,25 214 .214 .214 .989 
(.oo8) (.oo8) (.oo8) (.oo2) 

.40 .345 .345 .345 .962 
(.014) ( .014) ( .014) ( .015) 

• 55 .473 .526 .523 .922 
(.026) (.lll) (.I06) (.021) 

.70 .631 .727 .7Z0 ,717 
( . t o 3 )  ( .134)  ( .125)  ( .314)  

@Mean STRESS introduced into the true distance matrices 
• Entries are mean STRESS values. Standard deviations are in 
#Entries are mean Pearson r-square values. Standard deviations are in parentheses. 
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ery of the true coordinates as measured by the Pearson r-square between the true and 
reproduced coordinates. Each entry is the average of 10 runs made at the indicated error 
level with the cooresponding standard deviation shown in parentheses below the average. 
A step-size of 1 was used in the standard gradient procedure. 

When Eckart-Young starts are used at low levels of all three types of error, the 
standard gradient and C-matrix procedures achieve results equally as good as the CGM 
procedure. At higher levels of error, the CGM procedure is clearly better--especially with 
the log-normal model. When random coordinates are used as starts, the CGM procedure 
is markedly superior to the other two procedures. The CGM procedure recovers the input 
distances and the true coordinates almost as well from random starts as it does from 
Eckart-Young starts. In addition, the standard deviations for the CGM procedure are 
about the same level of magnitude for either type of starts which indicates that the pro- 
cedure is very stable. That is, the CGM procedure recovers basically the same configura- 
tion regardless of starting configuration. The r-square between the configurations recov- 
ered from an Eckart-Young as opposed to a random start is almost always greater than 
.95 regardless of the error model. 

Less extensive testing of other matrices and at other levels of error besides those 
shown in Table 1 revealed that the accuracy advantage of the CGM procedure over the 
other procedures increases with matrix size. Holding p fixed and increasing q or holding q 
fixed and increasing p--with the level of error held constant--resulted in an increase in 
the accuracy advantage for the CGM procedure. 

Finally, in addition to being more accurate and stable, the CGM procedure is, on 
average, 30 to 35 percent faster in terms of CPU time to convergence. It converges in 
about three iterations (an iteration being one pass through steps 1-6 above) from an 
Eckart-Young start and about six iterations from a random start. 

The robustness of the CGM procedure with starting configurations is particularly 
useful when there is missing data. When a substantial number of distances are missing in 
D .1/2, producing a good starting configuration is quite difficult. This is no hindrance to 
the CGM procedure. In fact, the CGM procedure has the further advantage that only 
coordinates for one set of points are necessary to start the process. If starting coordinates 
are available for both sets of points, then the CGM procedure can be conducted in "paral- 
lel" for both sets which provides a check upon the final configuration. For example, given 
starting values for X, steps 1-3 can be performed to arrive at an estimate of Z. This 
estimate plus the original (but unused) starting values for Z produce two starting configu- 
rations for 4-6 thereby producing two new estimates for X, and so on. Given the sim- 
plicity and speed of the CGM algorithm, a plethora of starting configurations (including 
random starts) can be tried in one run of the program thereby providing the researcher 
with some confidence in the final configuration. 

The CGM algorithm can also be applied with equal success to the metric similarities 
problem (p = q, X = Z). For small matrices, the CGM procedure is always faster and 
more accurate but the accuracy advantage is not significant. However, for large matrices 
the accuracy advantage is significant and the speed of the procedure gives it a particular 
advantage. When the similarities matrix is quite large, decomposition of the matrix to 
obtained starting coordinates can be computationally burdensome. Because the CGM 
procedure produces basically the same coordinates from a random start as it does from 
an Eckart-Young start, large similarities matrices can be scaled easily with the CGM 
procedure. As a consequence, because of its speed and its accuracy and stability over a 
variety of error models, the CGM procedure would be a useful adjunct to any general 
purpose scaling program. 
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An Application to Interest Group ~ Ratings of Members of Congress 

The robustness and speed of the CGM procedure make it very useful for performing 
unidimensional scaling of large data sets with missing data. As an example, consider 
interest group ratings of members of Congress. 

Every year a wide variety of interest groups issue ratings of the members of the 
House and Senate. These ratings are expressed in percentage terms--that is, from 0 per- 
cent to 100 percent approval of the way the Representative/Senator voted on issues of 
concern to the group. In spatial terms, a rating of 100 means that the interest group is 
very close to the legislator because the legislator voted exactly as the group would have if 
it had been in the legislature. A lower rating means that the group is less pleased with a 
legislator and is therefore more distant than if the rating was higher. 

To convert the ratings to distances, they were subtracted from 100 and divided by 
50; that is 

d* = (t00 - 6ij)/50 = dij + eij, (10) 

where 3ij is the razing of the ith member of Congress by the jth interest group. This 
transforms the ratings from a 0-100 scale to a 2-0 scale. The division by 50 has no effect 
upon the recovery of the coordinates. It is done only to confine the recovered coordinates 
to a - 1 / +  1 range. Elsewhere (Poole, 1981; Poole and Daniels, 1984), I have discussed 
issues relating to (10) in detail, and I will not repeat them here. 

Table 2 shows the unfolding results for the 96th Congress. The interest group ratings 
are substantially one dimensional. A one dimensional Euclidean configuration explains 
approximately 82 percent of the variance of 19,000 ratings in 1979 and 77 percent of the 
variance of 15,000 ratings in 1980. The quality of the fit for 1979 can be seen clearly in 
Figure 4. Figure 4 is the Shepard diagram for the 1979 unfolding. Fitting a regression line 
through this scatter plot (with d* as the dependent variable and d as the independent 
variable) produces an intercept of .040 and a slope of .970. The Pearson r-square of the 
regression is the value shown in Table 2. 

Table 3 displays the unfolding results by interest group (not all of the groups had 
issued their ratings for 1980 when these data were analyzed). The interest groups cover 
almost the entire spectrum of contested issues in American politics: peace groups, 
womens' groups, labor unions, civil liberties groups, senior citizens' groups, consumer 
groups, Christian fundamentalists, and so on. The fits for all groups except two of the 
farmers' organizations (NFU and NFO) are uniformly high. The recovered dimension is 
the standard left/right liberal/conservative continuum familiar to students of politics. 

TABLE 2 

Unidimensional Unfolding Results for the 96th Congress 

1979 1980 

One Dimensional Fit .8167 
(Pearson r-square) 
Interest Groups 37 
Senators i00 
Representatives 435 
Number of Ratings 19,339 

.7701 

28 
I00 
436 

14,965 
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FIGURE 4 
Shepard plot for 1979 interest group data. 

Conclusion 

The Conditional Global Minimum procedure is a unidimensional scaling method 
which exploits the unique geometry of the partial derivatives of the squared error loss 
function. It is a very robust procedure; it converges to a minimum very quickly from a 
random or non-random starting configuration. This makes the CGM procedure particu- 
larly useful in analyzing matrices with many missing elements where it is difficult to 
obtain good starting coordinates as well as large matrices, that is, matrices where p and q 
are both large, thereby making decomposition of the matrix particularly burdensome 
computationally. 

In addition, by definition, the CGM procedure does not get caught in local minima 
at any stage of the iteration. Local minima are a serious problem in unidimensional 
scaling. The robustness of the CGM procedure with arbitrary starting configurations, and 
the fact that only starting coordinates for one set of points (in the unfolding problem) are 
needed to begin the procedure, allows for great flexibility in program design. That is, 
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TABLE 3 

Unfolding Results by Interest Group 

Interest Grou E . . . .  

American Civil Liberties Union 
American Conservative Union 
Americans for Constitutional Action 
Americans for Democratic Action 
American Farm Bureau Federation 
American Federation of State, County and 

Municipal Employees 
American Federation of Teachers 
American Security Council 
Building and Construction Trades 
Bread for the World 
Chamber of Conmaerce of U.S. 
CCUS 2nd Rating* 
Committee for the Survival of a Free Congress# 
CFSC Economic Issues 
CFSC Defense Issues 
CFSC Social Issues 
Child Welfare League of America 
Christian Voice 
coalition for a New Foreign Military Policy 
Committee on Political Education 
Congress Watch 
Conservative Coalition @ 
consumer Federation of America 
Friends Committee on National Legislation 
League of Conservation Voters 
League of Women Voters 
National Alliance of Senior Citizens 
National Council of Senie= Citizens 
National Education Association 
National Farmer's Organization 
National Farmer's Union 
National Federation of Dependent Business 
National Taxpayer's Union 
National Womens' Political Caucus 
President Carter @ 
United Auto Workers 
United Mine Workers 

LocatiQn 
1979 1980 1979 

2 
r 

1980 

-1.062 -1.064 .684 .886 
1.136 1.168 .943 .887 
1.150 1.095 .916 .869 

-1.090 -1.032 .933 .934 
.761 .607 

-.946 -.976 .775 .479 
-.995 -1.008 .836 .840 

.942 .928 .917 .840 
-.713 .562 
-.795 -.809 .863 .867 
1.002 .569 .917 .274 
.895 .879 

1.087 1.028 .958 .907 
1.066 1.031 .911 .867 
1.085 .930 .922 .839 
1.119 1.116 .914 .830 
-.789 -.976 .852 .780 
1.080 .850 

-1.099 -1.115 .698 .798 
-.920 -.997 .907 .815 

-1.115 -1.070 .854 .849 
• 884 .915 .947 .952 

-1.166 .884 
-1.028 -1.125 .884 .861 
-1.026 -1.003 .758 .575 
-.920 -.876 .868 .641 
• 989 1.047 .907 .886 

-.935 -.969 .877 .895 
-.960 .679 
-.127 -.350 .109 .350 
-.405 .483 

.772 .788 .838 .801 
1.280 1.291 .761 .739 
-.977 .818 
-.759 -.754 .882 .721 
-.969 -.963 .956 .919 

-1.029 .843 

*CCUS issued a second set of ratings for the Senate in 1979. 

#CFSC issues four sets of ratings: one for all issues; one for Economic issues only; one 
for defense issues only; and one for "social" (busing, etc.) issues only. 

@ Compiled by Con~resslonal 9uarte~i7. The scores were corrected to remove absences. 

several different starting configurations can be tested simultaneously thereby increasing 
the reliability of the final configuration and any subsequent substantive interpretations. 
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